Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-28T10:39:23.181Z Has data issue: false hasContentIssue false

11 - Sensory control of object manipulation

Published online by Cambridge University Press:  23 December 2009

Dennis A. Nowak
Affiliation:
Klinik Kipfenberg, Kipfenberg, Germany
Joachim Hermsdörfer
Affiliation:
Technical University of Munich
Get access

Summary

Summary

Series of action phases characterize natural object manipulation tasks where each phase is responsible for satisfying a task subgoal. Subgoal attainment typically corresponds to distinct mechanical contact events, either involving the making or breaking of contact between the digits and an object or between a held object and another object. Subgoals are realized by the brain selecting and sequentially implementing suitable action-phase controllers that use sensory predictions and afferents signals in specific ways to tailor the motor output in anticipation of requirements imposed by objects' physical properties. This chapter discusses the use of tactile and visual sensory information in this context. It highlights the importance of sensory predictions, especially related to the discrete and distinct sensory events associated with contact events linked to subgoal completion, and considers how sensory signals influence and interact with such predictions in the control of manipulation tasks.

Sensory systems supporting object manipulation

In addition to multiple motor systems (arm, hand, posture), most natural object manipulation tasks engage multiple sensory systems. Vision provides critical information for control of task kinematics. In reaching, we use vision to locate objects in the environment and to identify contact sites for the digits that will be stable and advantageous for various actions we want to perform with the grasped object (Goodale et al., 1994; Santello & Soechting, 1998; Cohen & Rosenbaum, 2004; Cuijpers et al., 2004; Lukos et al., 2007).

Type
Chapter
Information
Sensorimotor Control of Grasping
Physiology and Pathophysiology
, pp. 141 - 160
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ballard, D. H., Hayhoe, M. M., Li, F. & Whitehead, S. D. (1992). Hand-eye coordination during sequential tasks. Philos Trans R Soc Lond B, Biol Sci, 337, 331–338.CrossRefGoogle ScholarPubMed
Birznieks, I., Burstedt, M. K. O., Edin, B. B. & Johansson, R. S. (1998). Mechanisms for force adjustments to unpredictable frictional changes at individual digits during two-fingered manipulation. J Neurophysiol, 80, 1989–2002.CrossRefGoogle ScholarPubMed
Birznieks, I., Jenmalm, P., Goodwin, A. & Johansson, R. (2001). Encoding of direction of fingertip forces by human tactile afferents. J Neurosci, 21, 8222–8237.CrossRefGoogle ScholarPubMed
Bracewell, R. M., Wing, A. M., Soper, H. M. & Clark, K. G. (2003). Predictive and reactive co-ordination of grip and load forces in bimanual lifting in man. Eur J Neurosci, 18, 2396–2402.CrossRefGoogle ScholarPubMed
Burstedt, M. K. O., Edin, B. B. & Johansson, R. S. (1997). Coordination of fingertip forces during human manipulation can emerge from independent neural networks controlling each engaged digit. Exp Brain Res, 117, 67–79.CrossRefGoogle ScholarPubMed
Burstedt, M. K. O., Flanagan, R. & Johansson, R. S. (1999). Control of grasp stability in humans under different frictional conditions during multi-digit manipulation. J Neurophysiol, 82, 2393–2405.CrossRefGoogle Scholar
Cadoret, G. & Smith, A. M. (1996). Friction, not texture, dictates grip forces used during object manipulation. J Neurophysiol, 75, 1963–1969.CrossRefGoogle Scholar
Cohen, R. G. & Rosenbaum, D. A. (2004). Where grasps are made reveals how grasps are planned: generation and recall of motor plans. Exp Brain Res, 157, 486–495.CrossRefGoogle ScholarPubMed
Cole, K. J., Steyers, C. M. & Graybill, E. K. (2003). The effects of graded compression of the median nerve in the carpal canal on grip force. Exp Brain Res, 148, 150–157.CrossRefGoogle ScholarPubMed
Cuijpers, R. H., Smeets, J. B. & Brenner, E. (2004). On the relation between object shape and grasping kinematics. J Neurophysiol, 91, 2598–2606.CrossRefGoogle ScholarPubMed
Edin, B. B., Westling, G. & Johansson, R. S. (1992). Independent control of fingertip forces at individual digits during precision lifting in humans. J Physiol, 450, 547–564.CrossRefGoogle Scholar
Eliasson, A. C., Forssberg, H., Ikuta, K.et al. (1995). Development of human precision grip V. Anticipatory and triggered grip actions during sudden loading. Exp Brain Res, 106, 425–433.Google ScholarPubMed
Flanagan, J. R. & Tresilian, J. R. (1994). Grip load force coupling: a general control strategy for transporting objects. J Exp Psychol Hum Percept Perform, 20, 944–957.CrossRefGoogle ScholarPubMed
Flanagan, J. R. & Wing, A. M. (1995). The stability of precision grip forces during cyclic arm movements with a hand-held load. Exp Brain Res, 105, 455–464.Google ScholarPubMed
Flanagan, J. R. & Beltzner, M. A. (2000). Independence of perceptual and sensorimotor predictions in the size–weight illusion. Nat Neurosci, 3, 737–41.CrossRefGoogle ScholarPubMed
Flanagan, J. R. & Johansson, R. S. (2003). Action plans used in action observation. Nature, 424, 769–771.CrossRefGoogle ScholarPubMed
Flanagan, J. R., Burstedt, M. K. O. & Johansson, R. S. (1999). Control of fingertip forces in multi-digit manipulation. J Neurophysiol, 81, 1706–1717.CrossRefGoogle Scholar
Flanagan, J. R., Bowman, M. C. & Johansson, R. S. (2006). Control strategies in object manipulation tasks. Curr Opin Neurobiol, 16, 650–659.CrossRefGoogle ScholarPubMed
Forssberg, H., Eliasson, A. C., Kinoshita, H., Johansson, R. S. & Westling, G. (1991). Development of human precision grip. I: Basic coordination of force. Exp Brain Res, 85, 451–457.CrossRefGoogle Scholar
Forssberg, H., Kinoshita, H., Eliasson, A. C.et al. (1992). Development of human precision grip. 2. Anticipatory control of isometric forces targeted for objects weight. Exp Brain Res, 90, 393–398.Google Scholar
Forssberg, H., Eliasson, A. C., Kinoshita, H., Westling, G. & Johansson, R. S. (1995). Development of human precision grip. IV. Tactile adaptation of isometric finger forces to the frictional condition. Exp Brain Res, 104, 323–330.Google ScholarPubMed
Gentilucci, M., Toni, I., Daprati, E. & Gangitano, M. (1997). Tactile input of the hand and the control of reaching to grasp movements. Exp Brain Res, 114, 130–137.CrossRefGoogle ScholarPubMed
Georgopoulos, A. P., Schwartz, A. B. & Kettner, R. E. (1986). Neuronal population coding of movement direction. Science, 233, 1416–1419.CrossRefGoogle ScholarPubMed
Goodale, M. A., Meenan, J. P., Bülthoff, H. H.et al. (1994). Separate neural pathways for the visual analysis of object shape in perception and prehension. Curr Biol, 4, 604–610.CrossRefGoogle ScholarPubMed
Goodwin, A. W. & Wheat, H. E. (2004). Sensory signals in neural populations underlying tactile perception and manipulation. Ann Rev Neurosci, 27, 53–77.CrossRefGoogle ScholarPubMed
Goodwin, A. W., Jenmalm, P. & Johansson, R. S. (1998). Control of grip force when tilting objects: effect of curvature of grasped surfaces and of applied tangential torque. J Neurosci, 18, 10724–10734.CrossRefGoogle ScholarPubMed
Gordon, A. M. & Soechting, J. F. (1995). Use of tactile afferent information in sequential finger movements. Exp Brain Res, 107, 281–292.CrossRefGoogle ScholarPubMed
Gordon, A. M., Forssberg, H., Johansson, R. S. & Westling, G. (1991). Integration of sensory information during the programming of precision grip: comments on the contributions of size cues. Exp Brain Res, 85, 226–229.CrossRefGoogle ScholarPubMed
Gordon, A. M., Forssberg, H., Johansson, R. S., Eliasson, A. C. & Westling, G. (1992). Development of human precision grip. 3. Integration of visual size cues during the programming of isometric forces. Exp Brain Res, 90, 399–403.Google ScholarPubMed
Gordon, A. M., Westling, G., Cole, K. J. & Johansson, R. S. (1993). Memory representations underlying motor commands used during manipulation of common and novel objects. J Neurophysiol, 69, 1789–1796.CrossRefGoogle ScholarPubMed
Gysin, P., Kaminski, T. R. & Gordon, A. M. (2003). Coordination of fingertip forces in object transport during locomotion. Exp Brain Res, 149, 371–379.CrossRefGoogle ScholarPubMed
Häger-Ross, C. & Johansson, R. S. (1996). Non-digital afferent input in reactive control of fingertip forces during precision grip. Exp Brain Res, 110, 131–141.CrossRefGoogle Scholar
Jenmalm, P. & Johansson, R. S. (1997). Visual and somatosensory information about object shape control manipulative finger tip forces. J Neurosci, 17, 4486–4499.CrossRefGoogle Scholar
Jenmalm, P., Dahlstedt, S. & Johansson, R. S. (2000). Visual and tactile information about object curvature control fingertip forces and grasp kinematics in human dexterous manipulation. J Neurophysiol, 84, 2984–2997.CrossRefGoogle ScholarPubMed
Jenmalm, P., Birznieks, I., Goodwin, A. W. & Johansson, R. S. (2003). Influences of object shape on responses in human tactile afferents under conditions characteristic for manipulation. Eur J Neurosci, 18, 164–176.CrossRefGoogle Scholar
Johansson, R. S. & Vallbo, Å.B. (1976). Skin mechanoreceptors in the human hand: an inference of some population properties. In Zotterman, Y. (Ed.), Sensory Functions of the Skin in Primates, with Special Reference to Man (pp. 171–184). Oxford, UK: Pergamon Press Ltd.Google Scholar
Johansson, R. S. & Vallbo, A. B. (1979). Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J Physiol, 286, 283–300.CrossRefGoogle ScholarPubMed
Johansson, R. S. & Vallbo, Å. B. (1983). Tactile sensory coding in the glabrous skin of the human hand. Trends Neurosci, 6, 27–31.CrossRefGoogle Scholar
Johansson, R. S. & Westling, G. (1984). Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res, 56, 550–564.CrossRefGoogle ScholarPubMed
Johansson, R. S. & Westling, G. (1987). Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip. Exp Brain Res, 66, 141–154.CrossRefGoogle ScholarPubMed
Johansson, R. S. & Westling, G. (1988a). Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Exp Brain Res, 71, 59–71.CrossRefGoogle ScholarPubMed
Johansson, R. S. & Westling, G. (1988b). Programmed and triggered actions to rapid load changes during precision grip. Exp Brain Res, 71, 72–86.CrossRefGoogle ScholarPubMed
Johansson, R. S. & Cole, K. J. (1992). Sensory-motor coordination during grasping and manipulative actions. Curr Opin Neurobiol, 2, 815–823.CrossRefGoogle ScholarPubMed
Johansson, R. S. & Birznieks, I. (2004). First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nat Neurosci, 7, 170–177.CrossRefGoogle ScholarPubMed
Johansson, R. S., Backlin, J. L. & Burstedt, M. K. O. (1999). Control of grasp stability during pronation and supination movements. Exp Brain Res, 128, 20–30.CrossRefGoogle ScholarPubMed
Johansson, R. S., Westling, G., Bäckström, A. & Flanagan, J. R. (2001). Eye-hand coordination in object manipulation. J Neurosci, 21, 6917–6932.CrossRefGoogle ScholarPubMed
Knibestöl, M. (1973). Stimulus-response functions of rapidly adapting mechanoreceptors in human glabrous skin area. J Physiol, 232, 427–452.CrossRefGoogle ScholarPubMed
Knibestöl, M. (1975). Stimulus-response functions of slowly adapting mechanoreceptors in the human glabrous skin area. J Physiol, 245, 63–80.CrossRefGoogle ScholarPubMed
Lackner, J. R. & DiZio, P. A. (2000). Aspects of body self-calibration. Trends Cogn Sci, 4, 279–288.CrossRefGoogle ScholarPubMed
LaMotte, R. H. (2000). Softness discrimination with a tool. J Neurophysiol, 83, 1777–1786.CrossRefGoogle Scholar
Land, M. F. & Furneaux, S. (1997). The knowledge base of the oculomotor system. Philos Trans R Soc Lond B, Biol Sci, 352, 1231–1239.CrossRefGoogle ScholarPubMed
Land, M., Mennie, N. & Rusted, J. (1999). The roles of vision and eye movements in the control of activities of daily living. Perception, 28, 1311–1328.CrossRefGoogle ScholarPubMed
Lemon, R. N., Johansson, R. S. & Westling, G. (1995). Corticospinal control during reach, grasp and precision lift in man. J Neurosci, 15, 6145–6156.CrossRefGoogle ScholarPubMed
Lukos, J., Ansuini, C. & Santello, M. (2007). Choice of contact points during multidigit grasping: effect of predictability of object center of mass location. J Neurosci, 27, 3894–3903.CrossRefGoogle ScholarPubMed
Macefield, V. G. & Johansson, R. S. (1996). Control of grip force during restraint of an object held between finger and thumb: responses of muscle and joint afferents from the digits. Exp Brain Res, 108, 172–184.Google ScholarPubMed
Macefield, V. G., Häger-Ross, C. & Johansson, R. S. (1996). Control of grip force during restraint of an object held between finger and thumb: responses of cutaneous afferents from the digits. Exp Brain Res, 108, 155–171.Google ScholarPubMed
Monzée, J., Lamarre, Y. & Smith, A. M. (2003). The effects of digital anesthesia on force control using a precision grip. J Neurophysiol, 89, 672–683.CrossRefGoogle ScholarPubMed
Niu, X., Latash, M. L. & Zatsiorsky, V. M. (2007). Prehension synergies in the grasps with complex friction patterns: local versus synergic effects and the template control. J Neurophysiol, 98, 16–28.CrossRefGoogle ScholarPubMed
Nowak, D. A. & Hermsdörfer, J. (2003). Digit cooling influences grasp efficiency during manipulative tasks. Eur J Appl Physiol, 89, 127–133.CrossRefGoogle ScholarPubMed
Nowak, D. A., Glasauer, S. & Hermsdorfer, J. (2004). How predictive is grip force control in the complete absence of somatosensory feedback?Brain, 127, 182–192.CrossRefGoogle ScholarPubMed
Paillard, J. (1996). Fast and slow feedback loops for the visual correction of spatial errors in a pointing task: a reappraisal. Can J Physiol Pharmacol, 74, 401–417.CrossRefGoogle Scholar
Paré, M. & Dugas, C. (1999). Developmental changes in prehension during childhood. Exp Brain Res, 125, 239–247.CrossRefGoogle ScholarPubMed
Pawluk, D. T. & Howe, R. D. (1999). Dynamic lumped element response of the human fingerpad. J Biomech Eng, 121, 178–183.CrossRefGoogle ScholarPubMed
Prablanc, C., Pélisson, D. & Goodale, M. A. (1986). Visual control of reaching movements without vision of the limb. I. Role of retinal feedback of target position in guiding the hand. Exp Brain Res, 62, 293–302.CrossRefGoogle ScholarPubMed
Prablanc, C., Desmurget, M. & Gréa, H. (2003). Neural control of on-line guidance of hand reaching movements. Progr Brain Res, 142, 155–170.CrossRefGoogle ScholarPubMed
Quaney, B. M. & Cole, K. J. (2004). Distributing vertical forces between the digits during gripping and lifting: the effects of rotating the hand versus rotating the object. Exp Brain Res, 155, 145–155.CrossRefGoogle ScholarPubMed
Rabin, E. & Gordon, A. M. (2004). Tactile feedback contributes to consistency of finger movements during typing. Exp Brain Res, 155, 362–369.CrossRefGoogle ScholarPubMed
Rao, A. K. & Gordon, A. M. (2001). Contribution of tactile information to accuracy in pointing movements. Exp Brain Res, 138, 438–445.CrossRefGoogle ScholarPubMed
Reilmann, R., Gordon, A. M. & Henningsen, H. (2001). Initiation and development of fingertip forces during whole-hand grasping. Exp Brain Res, 140, 443–452.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fogassi, L. & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci, 2, 661–670.CrossRefGoogle Scholar
Rotman, G., Troje, N. F., Johansson, R. S. & Flanagan, J. R. (2006). Eye movements when observing predictable and unpredictable actions. J Neurophysiol, 96, 1358–1369.CrossRefGoogle ScholarPubMed
Säfström, D. & Edin, B. B. (2004). Task requirements influence sensory integration during grasping in humans. Learn Mem, 11, 356–363.CrossRefGoogle ScholarPubMed
Salimi, I., Hollender, I., Frazier, W. & Gordon, A. M. (2000). Specificity of internal representations underlying grasping. J Neurophysiol, 84, 2390–2397.CrossRefGoogle ScholarPubMed
Salimi, I., Frazier, W., Reilmann, R. & Gordon, A. M. (2003). Selective use of visual information signaling objects' center of mass for anticipatory control of manipulative fingertip forces. Exp Brain Res, 150, 9–18.CrossRefGoogle ScholarPubMed
Santello, M. & Soechting, J. F. (1998). Gradual molding of the hand to object contours. J Neurophysiol, 79, 1307–1320.CrossRefGoogle ScholarPubMed
Santello, M. & Soechting, J. F. (2000). Force synergies for multifingered grasping. Exp Brain Res, 133, 457–467.CrossRefGoogle ScholarPubMed
Saunders, J. A. & Knill, D. C. (2004). Visual feedback control of hand movements. J Neurosci, 24, 3223–3234.CrossRefGoogle ScholarPubMed
Schenker, M., Burstedt, M. K., Wiberg, M. & Johansson, R. S. (2006). Precision grip function after hand replantation and digital nerve injury. J Plast Reconstr Aesthet Surg, 59, 706–716.CrossRefGoogle ScholarPubMed
Vallbo, Å.B. & Hagbarth, K.-E. (1968). Activity from skin mechanoreceptors recorded percutaneously in awake human subjects. Exp Neurol, 21, 270–289.CrossRefGoogle ScholarPubMed
Vallbo, A. B. & Johansson, R. S. (1984). Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Hum Neurobiol, 3, 3–14.Google ScholarPubMed
Westling, G. & Johansson, R. S. (1984). Factors influencing the force control during precision grip. Exp Brain Res, 53, 277–284.CrossRefGoogle ScholarPubMed
Westling, G. & Johansson, R. S. (1987). Responses in glabrous skin mechanoreceptors during precision grip in humans. Exp Brain Res, 66, 128–140.CrossRefGoogle ScholarPubMed
Wheat, H. E., Goodwin, A. W. & Browning, A. S. (1995). Tactile resolution: peripheral neural mechanisms underlying the human capacity to determine positions of objects contacting the fingerpad. J Neurosci, 15, 5582–5595.CrossRefGoogle ScholarPubMed
Wing, A. M. & Lederman, S. J. (1998). Anticipating load torques produced by voluntary movements. J Exp Psychol Hum Percept Perform, 24, 1571–1581.CrossRefGoogle ScholarPubMed
Witney, A. G. & Wolpert, D. M. (2007). The effect of externally generated loading on predictive grip force modulation. Neurosci Lett, 414, 10–15.CrossRefGoogle ScholarPubMed
Witney, A. G., Goodbody, S. J. & Wolpert, D. M. (1999). Predictive motor learning of temporal delays. J Neurophysiol, 82, 2039–2048.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×