1.
Krebs JE, Goldstein ES, Kilpatrick ST, Lewin B. Lewin’s Genes X. International ed. Jones and Bartlett; 2011. https://app.kortext.com/Shibboleth.sso/Login?entityID=https://shib-idp.ucl.ac.uk/shibboleth&target=https://app.kortext.com/borrow/323975
2.
Wood NW. Neurogenetics: A Guide for Clinicians. Cambridge University Press; 2012. http://ucl.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=2910094060004761&institutionId=4761&customerId=4760
3.
Pritchard DJ, Korf BR. Medical Genetics at a Glance. 3rd edition. Wiley; 2013. https://bibliu.com/users/saml/samlUCL?RelayState=eyJjdXN0b21fbGF1bmNoX3VybCI6IiMvdmlldy9ib29rcy85NzgxMTE4Njg5MDExL2VwdWIvT0VCUFMvY29udGVudHMuaHRtbCJ9
4.
Robinson TR, Wiley InterScience (Online service). Genetics for Dummies. 2nd ed. Wiley Pub; 2010. http://dx.doi.org/10.1002/9781118269275
5.
Amthor F. Neuroscience for Dummies. Wiley; 2012.
6.
Johns P. Clinical Neuroscience: An Illustrated Colour Text. Churchill Livingstone; 2014. https://www.clinicalkey.com/student/content/toc/3-s2.0-C20090355117
7.
Kratz RF. Molecular & Cell Biology for Dummies. Wiley; 2009.
8.
Alberts B, Bray D, Hopkin K, et al. Essential Cell Biology. Fourth edition. Garland Science; 2014.
9.
Barker RA, Cicchetti F, Robinson ESJ. Neuroanatomy and Neuroscience at a Glance. Fifth edition. Wiley Blackwell; 2018. https://bibliu.com/users/saml/samlUCL?RelayState=eyJjdXN0b21fbGF1bmNoX3VybCI6IiMvdmlldy9ib29rcy85NzgxMTE5MTY4NDIzL2VwdWIvT1BTL2Z0b2MuaHRtbCJ9
10.
Levitan IB, Kaczmarek LK. The Neuron: Cell and Molecular Biology. Fourth edition. Oxford University Press; 2015. http://dx.doi.org/10.1093/med/9780199773893.001.0001
11.
Kandel ER, Schwartz JH, Jessell TM, Siegelbaum S, Hudspeth AJ, eds. Principles of Neural Science. Fifth edition. McGraw Hill Medical; 2013. http://ucl.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=2910131910004761&institutionId=4761&customerId=4760
12.
Diamond MC, Scheibel AB, Elson LM. The Human Brain Coloring Book. Vol 306. 1st ed. Barnes & Noble Books; 1985.
13.
Clarke C, Howard R, Rossor M, Shorvon SD, eds. Neurology: A Queen Square Textbook. Second edition. Wiley Blackwell; 2016. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118486160
14.
Castiello U. The neuroscience of grasping. Nature Reviews Neuroscience. 2005;6(9):726-736. doi:10.1038/nrn1744
15.
Davare M, Kraskov A, Rothwell JC, Lemon RN. Interactions between areas of the cortical grasping network. Current Opinion in Neurobiology. 2011;21(4):565-570. doi:10.1016/j.conb.2011.05.021
16.
Gerbella M, Rozzi S, Rizzolatti G. The extended object-grasping network. Experimental Brain Research. 2017;235(10):2903-2916. doi:10.1007/s00221-017-5007-3
17.
Goodale MA, Meenan JP, Bülthoff HH, Nicolle DA, Murphy KJ, Racicot CI. Separate neural pathways for the visual analysis of object shape in perception and prehension. Current Biology. 1994;4(7):604-610. doi:10.1016/S0960-9822(00)00132-9
18.
Grafton ST. The cognitive neuroscience of prehension: recent developments. Experimental Brain Research. 2010;204(4):475-491. doi:10.1007/s00221-010-2315-2
19.
Jeannerod M, Arbib MA, Rizzolatti G, Sakata H. Grasping objects: the cortical mechanisms of visuomotor transformation. Trends in Neurosciences. 1995;18(7):314-320. doi:10.1016/0166-2236(95)93921-J
20.
Johansson RS, Flanagan JR. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nature Reviews Neuroscience. 2009;10(5):345-359. doi:10.1038/nrn2621
21.
Lemon RN. Descending Pathways in Motor Control. Annual Review of Neuroscience. 2008;31(1):195-218. doi:10.1146/annurev.neuro.31.060407.125547
22.
Picard N, Strick PL. Imaging the premotor areas. Current Opinion in Neurobiology. 2001;11(6):663-672. doi:10.1016/S0959-4388(01)00266-5
23.
Jellinger KA. Neuropathology of sporadic Parkinson’s disease: Evaluation and changes of concepts. Movement Disorders. 2012;27(1):8-30. doi:10.1002/mds.23795
24.
Kumaran R, Cookson MR. Pathways to Parkinsonism Redux: convergent pathobiological mechanisms in genetics of Parkinson’s disease. Human Molecular Genetics. 2015;24(R1):R32-R44. doi:10.1093/hmg/ddv236
25.
Surmeier DJ, Obeso JA, Halliday GM. Selective neuronal vulnerability in Parkinson disease. Nature Reviews Neuroscience. 2017;18(2):101-113. doi:10.1038/nrn.2016.178
26.
Walsh DM, Selkoe DJ. A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration. Nature Reviews Neuroscience. 2016;17(4):251-260. doi:10.1038/nrn.2016.13
27.
Stefanis L.  -Synuclein in Parkinson’s Disease. Cold Spring Harbor Perspectives in Medicine. 2012;2(2):a009399-a009399. doi:10.1101/cshperspect.a009399
28.
Burré J. The Synaptic Function of α-Synuclein. Journal of Parkinson’s Disease. 2015;5(4):699-713. doi:10.3233/JPD-150642
29.
Xilouri M, Brekk OR, Stefanis L. Autophagy and Alpha-Synuclein: Relevance to Parkinson’s Disease and Related Synucleopathies. Movement Disorders. 2016;31(2):178-192. doi:10.1002/mds.26477
30.
Dehay B, Vila M, Bezard E, Brundin P, Kordower JH. Alpha-synuclein propagation: New insights from animal models. Movement Disorders. 2016;31(2):161-168. doi:10.1002/mds.26370
31.
Roosen DA, Cookson MR. LRRK2 at the interface of autophagosomes, endosomes and lysosomes. Molecular Neurodegeneration. 2016;11(1). doi:10.1186/s13024-016-0140-1
32.
Wolpert DM, Ghahramani Z. Computational principles of movement neuroscience. Nature Neuroscience. 2000;3(Supp):1212-1217. doi:10.1038/81497
33.
Friston K, Mattout J, Kilner J. Action understanding and active inference. Biological Cybernetics. 2011;104(1-2):137-160. doi:10.1007/s00422-011-0424-z
34.
Körding KP, Wolpert DM. Bayesian decision theory in sensorimotor control. Trends in Cognitive Sciences. 2006;10(7):319-326. doi:10.1016/j.tics.2006.05.003
35.
Johansson RS, Flanagan JR. Sensory control of object manipulation. In: Nowak DA, Hermsdorfer J, eds. Sensorimotor Control of Grasping. Cambridge University Press; 2009:141-160. doi:10.1017/CBO9780511581267.012
36.
Sarlegna FR, Mutha PK. The influence of visual target information on the online control of movements. Vision Research. 2015;110:144-154. doi:10.1016/j.visres.2014.07.001
37.
Jakobson LS, Goodale MA. Factors affecting higher-order movement planning: a kinematic analysis of human prehension. Experimental Brain Research. 1991;86(1). doi:10.1007/BF00231054
38.
Balendra R, Patani R. Quo vadis motor neuron disease? World Journal of Methodology. 2016;6(1). doi:10.5662/wjm.v6.i1.56
39.
Bäumer D, Talbot K, Turner MR. Advances in motor neurone disease. Journal of the Royal Society of Medicine. 2014;107(1):14-21. doi:10.1177/0141076813511451
40.
Lemon RN. Descending Pathways in Motor Control. Annual Review of Neuroscience. 2008;31(1):195-218. doi:10.1146/annurev.neuro.31.060407.125547
41.
Dietz V, Sinkjaer T. Spastic movement disorder: impaired reflex function and altered muscle mechanics. The Lancet Neurology. 2007;6(8):725-733. doi:10.1016/S1474-4422(07)70193-X
42.
Blackstone C. Hereditary spastic paraplegia. In: Neurogenetics, Part II. Vol 148. Elsevier; 2018:633-652. doi:10.1016/B978-0-444-64076-5.00041-7
43.
Mathias CJ, Bannister SR, eds. Autonomic Failure. Vol 1. Oxford University Press; 2013. doi:10.1093/med/9780198566342.001.0001
44.
Iodice V, Low DA, Vichayanrat E, Mathias CJ. Cardiovascular autonomic dysfunction in MSA and Parkinson’s disease: Similarities and differences. Journal of the Neurological Sciences. 2011;310(1-2):133-138. doi:10.1016/j.jns.2011.07.014
45.
Iodice V, Sandroni P. Autonomic Neuropathies. CONTINUUM: Lifelong Learning in Neurology. 2014;20:1373-1397. doi:10.1212/01.CON.0000455875.76179.b1
46.
Institute of Neurology, Queen Square, National Hospital for Neurology and Neurosurgery (London, England). Neurology: A Queen Square Textbook. Second edition. (Clarke C, Howard R, Rossor M, Shorvon SD, eds.). John Wiley & Sons, Inc; 2016. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118486160
47.
OMIM - Online Mendelian Inheritance in Man. https://www.omim.org/
48.
Zrinzo L. The Role of Imaging in the Surgical Treatment of Movement Disorders. Neuroimaging Clinics of North America. 2010;20(1):125-140. doi:10.1016/j.nic.2009.08.002
49.
Baev KV. A New Conceptual Understanding of Brain Function: Basic Mechanisms of Brain-Initiated Normal and Pathological Behaviors. Critical ReviewsTM in Neurobiology. 2007;19(2-3):119-202. doi:10.1615/CritRevNeurobiol.v19.i2-3.30
50.
Marsden CD, Obeso JA. The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson’s disease. Brain. 1994;117(4):877-897. doi:10.1093/brain/117.4.877
51.
Akram H, Dayal V, Mahlknecht P, et al. Connectivity derived thalamic segmentation in deep brain stimulation for tremor. NeuroImage: Clinical. 2018;18:130-142. doi:10.1016/j.nicl.2018.01.008