Akram, H., Dayal, V., Mahlknecht, P., Georgiev, D., Hyam, J., Foltynie, T., Limousin, P., De Vita, E., Jahanshahi, M., Ashburner, J., Behrens, T., Hariz, M., & Zrinzo, L. (2018). Connectivity derived thalamic segmentation in deep brain stimulation for tremor. NeuroImage: Clinical, 18, 130–142. https://doi.org/10.1016/j.nicl.2018.01.008
Alberts, B., Bray, D., Hopkin, K., Johnson, A., Lewis, J., Raff, M. C., Roberts, K., & Walter, P. (2014). Essential cell biology (Fourth edition). Garland Science.
Amthor, F. (2012). Neuroscience for dummies. Wiley.
Baev, K. V. (2007). A New Conceptual Understanding of Brain Function: Basic Mechanisms of Brain-Initiated Normal and Pathological Behaviors. Critical ReviewsTM in Neurobiology, 19(2–3), 119–202. https://doi.org/10.1615/CritRevNeurobiol.v19.i2-3.30
Balendra, R., & Patani, R. (2016). Quo vadis motor neuron disease? World Journal of Methodology, 6(1). https://doi.org/10.5662/wjm.v6.i1.56
Barker, R. A., Cicchetti, F., & Robinson, E. S. J. (2018). Neuroanatomy and neuroscience at a glance (Fifth edition). Wiley Blackwell. https://bibliu.com/users/saml/samlUCL?RelayState=eyJjdXN0b21fbGF1bmNoX3VybCI6IiMvdmlldy9ib29rcy85NzgxMTE5MTY4NDIzL2VwdWIvT1BTL2Z0b2MuaHRtbCJ9
Bäumer, D., Talbot, K., & Turner, M. R. (2014). Advances in motor neurone disease. Journal of the Royal Society of Medicine, 107(1), 14–21. https://doi.org/10.1177/0141076813511451
Blackstone, C. (2018). Hereditary spastic paraplegia. In Neurogenetics, Part II (Vol. 148, pp. 633–652). Elsevier. https://doi.org/10.1016/B978-0-444-64076-5.00041-7
Burré, J. (2015). The Synaptic Function of α-Synuclein. Journal of Parkinson’s Disease, 5(4), 699–713. https://doi.org/10.3233/JPD-150642
Castiello, U. (2005). The neuroscience of grasping. Nature Reviews Neuroscience, 6(9), 726–736. https://doi.org/10.1038/nrn1744
Clarke, C., Howard, R., Rossor, M., & Shorvon, S. D. (Eds.). (2016). Neurology: a Queen Square textbook (Second edition). Wiley Blackwell. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118486160
Davare, M., Kraskov, A., Rothwell, J. C., & Lemon, R. N. (2011). Interactions between areas of the cortical grasping network. Current Opinion in Neurobiology, 21(4), 565–570. https://doi.org/10.1016/j.conb.2011.05.021
Dehay, B., Vila, M., Bezard, E., Brundin, P., & Kordower, J. H. (2016). Alpha-synuclein propagation: New insights from animal models. Movement Disorders, 31(2), 161–168. https://doi.org/10.1002/mds.26370
Diamond, M. C., Scheibel, A. B., & Elson, L. M. (1985). The human brain coloring book (1st ed, Vol. 306). Barnes & Noble Books.
Dietz, V., & Sinkjaer, T. (2007). Spastic movement disorder: impaired reflex function and altered muscle mechanics. The Lancet Neurology, 6(8), 725–733. https://doi.org/10.1016/S1474-4422(07)70193-X
Friston, K., Mattout, J., & Kilner, J. (2011). Action understanding and active inference. Biological Cybernetics, 104(1–2), 137–160. https://doi.org/10.1007/s00422-011-0424-z
Gerbella, M., Rozzi, S., & Rizzolatti, G. (2017). The extended object-grasping network. Experimental Brain Research, 235(10), 2903–2916. https://doi.org/10.1007/s00221-017-5007-3
Goodale, M. A., Meenan, J. P., Bülthoff, H. H., Nicolle, D. A., Murphy, K. J., & Racicot, C. I. (1994). Separate neural pathways for the visual analysis of object shape in perception and prehension. Current Biology, 4(7), 604–610. https://doi.org/10.1016/S0960-9822(00)00132-9
Grafton, S. T. (2010). The cognitive neuroscience of prehension: recent developments. Experimental Brain Research, 204(4), 475–491. https://doi.org/10.1007/s00221-010-2315-2
Institute of Neurology, Queen Square & National Hospital for Neurology and Neurosurgery (London, England). (2016). Neurology: a Queen Square textbook (C. Clarke, R. Howard, M. Rossor, & S. D. Shorvon, Eds.; Second edition). John Wiley & Sons, Inc. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118486160
Iodice, V., Low, D. A., Vichayanrat, E., & Mathias, C. J. (2011). Cardiovascular autonomic dysfunction in MSA and Parkinson’s disease: Similarities and differences. Journal of the Neurological Sciences, 310(1–2), 133–138. https://doi.org/10.1016/j.jns.2011.07.014
Iodice, V., & Sandroni, P. (2014). Autonomic Neuropathies. CONTINUUM: Lifelong Learning in Neurology, 20, 1373–1397. https://doi.org/10.1212/01.CON.0000455875.76179.b1
Jakobson, L. S., & Goodale, M. A. (1991). Factors affecting higher-order movement planning: a kinematic analysis of human prehension. Experimental Brain Research, 86(1). https://doi.org/10.1007/BF00231054
Jeannerod, M., Arbib, M. A., Rizzolatti, G., & Sakata, H. (1995). Grasping objects: the cortical mechanisms of visuomotor transformation. Trends in Neurosciences, 18(7), 314–320. https://doi.org/10.1016/0166-2236(95)93921-J
Jellinger, K. A. (2012). Neuropathology of sporadic Parkinson’s disease: Evaluation and changes of concepts. Movement Disorders, 27(1), 8–30. https://doi.org/10.1002/mds.23795
Johansson, R. S., & Flanagan, J. R. (2009a). Sensory control of object manipulation. In D. A. Nowak & J. Hermsdorfer (Eds.), Sensorimotor Control of Grasping (pp. 141–160). Cambridge University Press. https://doi.org/10.1017/CBO9780511581267.012
Johansson, R. S., & Flanagan, J. R. (2009b). Coding and use of tactile signals from the fingertips in object manipulation tasks. Nature Reviews Neuroscience, 10(5), 345–359. https://doi.org/10.1038/nrn2621
Johns, P. (2014). Clinical neuroscience: an illustrated colour text. Churchill Livingstone. https://www.clinicalkey.com/student/content/toc/3-s2.0-C20090355117
Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S., & Hudspeth, A. J. (Eds.). (2013). Principles of neural science (Fifth edition). McGraw Hill Medical. http://ucl.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=2910131910004761&institutionId=4761&customerId=4760
Körding, K. P., & Wolpert, D. M. (2006). Bayesian decision theory in sensorimotor control. Trends in Cognitive Sciences, 10(7), 319–326. https://doi.org/10.1016/j.tics.2006.05.003
Kratz, R. F. (2009). Molecular & cell biology for dummies. Wiley.
Krebs, J. E., Goldstein, E. S., Kilpatrick, S. T., & Lewin, B. (2011). Lewin’s genes X (International ed). Jones and Bartlett. https://app.kortext.com/Shibboleth.sso/Login?entityID=https://shib-idp.ucl.ac.uk/shibboleth&target=https://app.kortext.com/borrow/323975
Kumaran, R., & Cookson, M. R. (2015). Pathways to Parkinsonism Redux: convergent pathobiological mechanisms in genetics of Parkinson’s disease. Human Molecular Genetics, 24(R1), R32–R44. https://doi.org/10.1093/hmg/ddv236
Lemon, R. N. (2008a). Descending Pathways in Motor Control. Annual Review of Neuroscience, 31(1), 195–218. https://doi.org/10.1146/annurev.neuro.31.060407.125547
Lemon, R. N. (2008b). Descending Pathways in Motor Control. Annual Review of Neuroscience, 31(1), 195–218. https://doi.org/10.1146/annurev.neuro.31.060407.125547
Levitan, I. B., & Kaczmarek, L. K. (2015). The neuron: cell and molecular biology (Fourth edition). Oxford University Press. http://dx.doi.org/10.1093/med/9780199773893.001.0001
Marsden, C. D., & Obeso, J. A. (1994). The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson’s disease. Brain, 117(4), 877–897. https://doi.org/10.1093/brain/117.4.877
Mathias, C. J., & Bannister, S. R. (Eds.). (2013). Autonomic Failure (Vol. 1). Oxford University Press. https://doi.org/10.1093/med/9780198566342.001.0001
OMIM - Online Mendelian Inheritance in Man. (n.d.). https://www.omim.org/
Picard, N., & Strick, P. L. (2001). Imaging the premotor areas. Current Opinion in Neurobiology, 11(6), 663–672. https://doi.org/10.1016/S0959-4388(01)00266-5
Pritchard, D. J., & Korf, B. R. (2013). Medical genetics at a glance (3rd edition). Wiley. https://bibliu.com/users/saml/samlUCL?RelayState=eyJjdXN0b21fbGF1bmNoX3VybCI6IiMvdmlldy9ib29rcy85NzgxMTE4Njg5MDExL2VwdWIvT0VCUFMvY29udGVudHMuaHRtbCJ9
Robinson, T. R. & Wiley InterScience (Online service). (2010). Genetics for dummies (2nd ed). Wiley Pub. http://dx.doi.org/10.1002/9781118269275
Roosen, D. A., & Cookson, M. R. (2016). LRRK2 at the interface of autophagosomes, endosomes and lysosomes. Molecular Neurodegeneration, 11(1). https://doi.org/10.1186/s13024-016-0140-1
Sarlegna, F. R., & Mutha, P. K. (2015). The influence of visual target information on the online control of movements. Vision Research, 110, 144–154. https://doi.org/10.1016/j.visres.2014.07.001
Stefanis, L. (2012).  -Synuclein in Parkinson’s Disease. Cold Spring Harbor Perspectives in Medicine, 2(2), a009399–a009399. https://doi.org/10.1101/cshperspect.a009399
Surmeier, D. J., Obeso, J. A., & Halliday, G. M. (2017). Selective neuronal vulnerability in Parkinson disease. Nature Reviews Neuroscience, 18(2), 101–113. https://doi.org/10.1038/nrn.2016.178
Walsh, D. M., & Selkoe, D. J. (2016). A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration. Nature Reviews Neuroscience, 17(4), 251–260. https://doi.org/10.1038/nrn.2016.13
Wolpert, D. M., & Ghahramani, Z. (2000). Computational principles of movement neuroscience. Nature Neuroscience, 3(Supp), 1212–1217. https://doi.org/10.1038/81497
Wood, N. W. (2012). Neurogenetics: a guide for clinicians. Cambridge University Press. http://ucl.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=2910094060004761&institutionId=4761&customerId=4760
Xilouri, M., Brekk, O. R., & Stefanis, L. (2016). Autophagy and Alpha-Synuclein: Relevance to Parkinson’s Disease and Related Synucleopathies. Movement Disorders, 31(2), 178–192. https://doi.org/10.1002/mds.26477
Zrinzo, L. (2010). The Role of Imaging in the Surgical Treatment of Movement Disorders. Neuroimaging Clinics of North America, 20(1), 125–140. https://doi.org/10.1016/j.nic.2009.08.002