[1]
J. E. Krebs, E. S. Goldstein, S. T. Kilpatrick, and B. Lewin, Lewin’s genes X, International ed. Sudbury, Mass: Jones and Bartlett, 2011 [Online]. Available: https://app.kortext.com/Shibboleth.sso/Login?entityID=https://shib-idp.ucl.ac.uk/shibboleth&target=https://app.kortext.com/borrow/323975
[2]
N. W. Wood, Neurogenetics: a guide for clinicians. Cambridge: Cambridge University Press, 2012 [Online]. Available: http://ucl.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=2910094060004761&institutionId=4761&customerId=4760
[3]
D. J. Pritchard and B. R. Korf, Medical genetics at a glance, 3rd edition. Wiley, 2013 [Online]. Available: https://bibliu.com/users/saml/samlUCL?RelayState=eyJjdXN0b21fbGF1bmNoX3VybCI6IiMvdmlldy9ib29rcy85NzgxMTE4Njg5MDExL2VwdWIvT0VCUFMvY29udGVudHMuaHRtbCJ9
[4]
T. R. Robinson and Wiley InterScience (Online service), Genetics for dummies, 2nd ed. Hoboken, NJ: Wiley Pub, 2010 [Online]. Available: http://dx.doi.org/10.1002/9781118269275
[5]
F. Amthor, Neuroscience for dummies. Mississauga, Ont: Wiley, 2012.
[6]
P. Johns, Clinical neuroscience: an illustrated colour text. Edinburgh: Churchill Livingstone, 2014 [Online]. Available: https://www.clinicalkey.com/student/content/toc/3-s2.0-C20090355117
[7]
R. F. Kratz, Molecular & cell biology for dummies. Hoboken, NJ: Wiley, 2009.
[8]
B. Alberts et al., Essential cell biology, Fourth edition. New York, NY: Garland Science, 2014.
[9]
R. A. Barker, F. Cicchetti, and E. S. J. Robinson, Neuroanatomy and neuroscience at a glance, Fifth edition. Hoboken, NJ: Wiley Blackwell, 2018 [Online]. Available: https://bibliu.com/users/saml/samlUCL?RelayState=eyJjdXN0b21fbGF1bmNoX3VybCI6IiMvdmlldy9ib29rcy85NzgxMTE5MTY4NDIzL2VwdWIvT1BTL2Z0b2MuaHRtbCJ9
[10]
I. B. Levitan and L. K. Kaczmarek, The neuron: cell and molecular biology, Fourth edition. [New York]: Oxford University Press, 2015 [Online]. Available: http://dx.doi.org/10.1093/med/9780199773893.001.0001
[11]
E. R. Kandel, J. H. Schwartz, T. M. Jessell, S. Siegelbaum, and A. J. Hudspeth, Eds., Principles of neural science, Fifth edition. New York: McGraw Hill Medical, 2013 [Online]. Available: http://ucl.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=2910131910004761&institutionId=4761&customerId=4760
[12]
M. C. Diamond, A. B. Scheibel, and L. M. Elson, The human brain coloring book, 1st ed., vol. 306. New York: Barnes & Noble Books, 1985.
[13]
C. Clarke, R. Howard, M. Rossor, and S. D. Shorvon, Eds., Neurology: a Queen Square textbook, Second edition. Chichester, West Sussex, UK: Wiley Blackwell, 2016 [Online]. Available: https://onlinelibrary.wiley.com/doi/book/10.1002/9781118486160
[14]
U. Castiello, ‘The neuroscience of grasping’, Nature Reviews Neuroscience, vol. 6, no. 9, pp. 726–736, Sep. 2005, doi: 10.1038/nrn1744.
[15]
M. Davare, A. Kraskov, J. C. Rothwell, and R. N. Lemon, ‘Interactions between areas of the cortical grasping network’, Current Opinion in Neurobiology, vol. 21, no. 4, pp. 565–570, Aug. 2011, doi: 10.1016/j.conb.2011.05.021.
[16]
M. Gerbella, S. Rozzi, and G. Rizzolatti, ‘The extended object-grasping network’, Experimental Brain Research, vol. 235, no. 10, pp. 2903–2916, Oct. 2017, doi: 10.1007/s00221-017-5007-3.
[17]
M. A. Goodale, J. P. Meenan, H. H. Bülthoff, D. A. Nicolle, K. J. Murphy, and C. I. Racicot, ‘Separate neural pathways for the visual analysis of object shape in perception and prehension’, Current Biology, vol. 4, no. 7, pp. 604–610, Jul. 1994, doi: 10.1016/S0960-9822(00)00132-9.
[18]
S. T. Grafton, ‘The cognitive neuroscience of prehension: recent developments’, Experimental Brain Research, vol. 204, no. 4, pp. 475–491, Aug. 2010, doi: 10.1007/s00221-010-2315-2.
[19]
M. Jeannerod, M. A. Arbib, G. Rizzolatti, and H. Sakata, ‘Grasping objects: the cortical mechanisms of visuomotor transformation’, Trends in Neurosciences, vol. 18, no. 7, pp. 314–320, Jul. 1995, doi: 10.1016/0166-2236(95)93921-J.
[20]
R. S. Johansson and J. R. Flanagan, ‘Coding and use of tactile signals from the fingertips in object manipulation tasks’, Nature Reviews Neuroscience, vol. 10, no. 5, pp. 345–359, May 2009, doi: 10.1038/nrn2621.
[21]
R. N. Lemon, ‘Descending Pathways in Motor Control’, Annual Review of Neuroscience, vol. 31, no. 1, pp. 195–218, Jul. 2008, doi: 10.1146/annurev.neuro.31.060407.125547.
[22]
N. Picard and P. L. Strick, ‘Imaging the premotor areas’, Current Opinion in Neurobiology, vol. 11, no. 6, pp. 663–672, Dec. 2001, doi: 10.1016/S0959-4388(01)00266-5.
[23]
K. A. Jellinger, ‘Neuropathology of sporadic Parkinson’s disease: Evaluation and changes of concepts’, Movement Disorders, vol. 27, no. 1, pp. 8–30, Jan. 2012, doi: 10.1002/mds.23795.
[24]
R. Kumaran and M. R. Cookson, ‘Pathways to Parkinsonism Redux: convergent pathobiological mechanisms in genetics of Parkinson’s disease’, Human Molecular Genetics, vol. 24, no. R1, pp. R32–R44, Oct. 2015, doi: 10.1093/hmg/ddv236.
[25]
D. J. Surmeier, J. A. Obeso, and G. M. Halliday, ‘Selective neuronal vulnerability in Parkinson disease’, Nature Reviews Neuroscience, vol. 18, no. 2, pp. 101–113, Feb. 2017, doi: 10.1038/nrn.2016.178.
[26]
D. M. Walsh and D. J. Selkoe, ‘A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration’, Nature Reviews Neuroscience, vol. 17, no. 4, pp. 251–260, Apr. 2016, doi: 10.1038/nrn.2016.13.
[27]
L. Stefanis, ‘ -Synuclein in Parkinson’s Disease’, Cold Spring Harbor Perspectives in Medicine, vol. 2, no. 2, pp. a009399–a009399, Feb. 2012, doi: 10.1101/cshperspect.a009399.
[28]
J. Burré, ‘The Synaptic Function of α-Synuclein’, Journal of Parkinson’s Disease, vol. 5, no. 4, pp. 699–713, Oct. 2015, doi: 10.3233/JPD-150642.
[29]
M. Xilouri, O. R. Brekk, and L. Stefanis, ‘Autophagy and Alpha-Synuclein: Relevance to Parkinson’s Disease and Related Synucleopathies’, Movement Disorders, vol. 31, no. 2, pp. 178–192, Feb. 2016, doi: 10.1002/mds.26477.
[30]
B. Dehay, M. Vila, E. Bezard, P. Brundin, and J. H. Kordower, ‘Alpha-synuclein propagation: New insights from animal models’, Movement Disorders, vol. 31, no. 2, pp. 161–168, Feb. 2016, doi: 10.1002/mds.26370.
[31]
D. A. Roosen and M. R. Cookson, ‘LRRK2 at the interface of autophagosomes, endosomes and lysosomes’, Molecular Neurodegeneration, vol. 11, no. 1, Dec. 2016, doi: 10.1186/s13024-016-0140-1.
[32]
D. M. Wolpert and Z. Ghahramani, ‘Computational principles of movement neuroscience’, Nature Neuroscience, vol. 3, no. Supp, pp. 1212–1217, Nov. 2000, doi: 10.1038/81497.
[33]
K. Friston, J. Mattout, and J. Kilner, ‘Action understanding and active inference’, Biological Cybernetics, vol. 104, no. 1–2, pp. 137–160, Feb. 2011, doi: 10.1007/s00422-011-0424-z.
[34]
K. P. Körding and D. M. Wolpert, ‘Bayesian decision theory in sensorimotor control’, Trends in Cognitive Sciences, vol. 10, no. 7, pp. 319–326, Jul. 2006, doi: 10.1016/j.tics.2006.05.003.
[35]
R. S. Johansson and J. R. Flanagan, ‘Sensory control of object manipulation’, in Sensorimotor Control of Grasping, D. A. Nowak and J. Hermsdorfer, Eds. Cambridge: Cambridge University Press, 2009, pp. 141–160 [Online]. Available: https://www.cambridge.org/core/product/identifier/CBO9780511581267A020/type/book_part
[36]
F. R. Sarlegna and P. K. Mutha, ‘The influence of visual target information on the online control of movements’, Vision Research, vol. 110, pp. 144–154, May 2015, doi: 10.1016/j.visres.2014.07.001.
[37]
L. S. Jakobson and M. A. Goodale, ‘Factors affecting higher-order movement planning: a kinematic analysis of human prehension’, Experimental Brain Research, vol. 86, no. 1, Aug. 1991, doi: 10.1007/BF00231054.
[38]
R. Balendra and R. Patani, ‘Quo vadis motor neuron disease?’, World Journal of Methodology, vol. 6, no. 1, 2016, doi: 10.5662/wjm.v6.i1.56.
[39]
D. Bäumer, K. Talbot, and M. R. Turner, ‘Advances in motor neurone disease’, Journal of the Royal Society of Medicine, vol. 107, no. 1, pp. 14–21, Jan. 2014, doi: 10.1177/0141076813511451.
[40]
R. N. Lemon, ‘Descending Pathways in Motor Control’, Annual Review of Neuroscience, vol. 31, no. 1, pp. 195–218, Jul. 2008, doi: 10.1146/annurev.neuro.31.060407.125547.
[41]
V. Dietz and T. Sinkjaer, ‘Spastic movement disorder: impaired reflex function and altered muscle mechanics’, The Lancet Neurology, vol. 6, no. 8, pp. 725–733, Aug. 2007, doi: 10.1016/S1474-4422(07)70193-X.
[42]
C. Blackstone, ‘Hereditary spastic paraplegia’, in Neurogenetics, Part II, vol. 148, Elsevier, 2018, pp. 633–652 [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/B9780444640765000417
[43]
C. J. Mathias and S. R. Bannister, Eds., Autonomic Failure, vol. 1. Oxford University Press, 2013 [Online]. Available: http://oxfordmedicine.com/view/10.1093/med/9780198566342.001.0001/med-9780198566342
[44]
V. Iodice, D. A. Low, E. Vichayanrat, and C. J. Mathias, ‘Cardiovascular autonomic dysfunction in MSA and Parkinson’s disease: Similarities and differences’, Journal of the Neurological Sciences, vol. 310, no. 1–2, pp. 133–138, Nov. 2011, doi: 10.1016/j.jns.2011.07.014.
[45]
V. Iodice and P. Sandroni, ‘Autonomic Neuropathies’, CONTINUUM: Lifelong Learning in Neurology, vol. 20, pp. 1373–1397, Oct. 2014, doi: 10.1212/01.CON.0000455875.76179.b1.
[46]
Institute of Neurology, Queen Square and National Hospital for Neurology and Neurosurgery (London, England), Neurology: a Queen Square textbook, Second edition. Chichester, West Sussex, UK: John Wiley & Sons, Inc, 2016 [Online]. Available: https://onlinelibrary.wiley.com/doi/book/10.1002/9781118486160
[47]
‘OMIM - Online Mendelian Inheritance in Man’. [Online]. Available: https://www.omim.org/
[48]
L. Zrinzo, ‘The Role of Imaging in the Surgical Treatment of Movement Disorders’, Neuroimaging Clinics of North America, vol. 20, no. 1, pp. 125–140, Feb. 2010, doi: 10.1016/j.nic.2009.08.002.
[49]
K. V. Baev, ‘A New Conceptual Understanding of Brain Function: Basic Mechanisms of Brain-Initiated Normal and Pathological Behaviors’, Critical ReviewsTM in Neurobiology, vol. 19, no. 2–3, pp. 119–202, 2007, doi: 10.1615/CritRevNeurobiol.v19.i2-3.30.
[50]
C. D. Marsden and J. A. Obeso, ‘The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson’s disease’, Brain, vol. 117, no. 4, pp. 877–897, 1994, doi: 10.1093/brain/117.4.877.
[51]
H. Akram et al., ‘Connectivity derived thalamic segmentation in deep brain stimulation for tremor’, NeuroImage: Clinical, vol. 18, pp. 130–142, 2018, doi: 10.1016/j.nicl.2018.01.008.