1.
Krebs, J.E., Goldstein, E.S., Kilpatrick, S.T., Lewin, B.: Lewin’s genes X. Jones and Bartlett, Sudbury, Mass (2011).
2.
Wood, N.W.: Neurogenetics: a guide for clinicians. Cambridge University Press, Cambridge (2012).
3.
Pritchard, D.J., Korf, B.R.: Medical genetics at a glance. Wiley (2013).
4.
Robinson, T.R., Wiley InterScience (Online service): Genetics for dummies. Wiley Pub, Hoboken, NJ (2010).
5.
Amthor, F.: Neuroscience for dummies. Wiley, Mississauga, Ont (2012).
6.
Johns, P.: Clinical neuroscience: an illustrated colour text. Churchill Livingstone, Edinburgh (2014).
7.
Kratz, R.F.: Molecular & cell biology for dummies. Wiley, Hoboken, NJ (2009).
8.
Alberts, B., Bray, D., Hopkin, K., Johnson, A., Lewis, J., Raff, M.C., Roberts, K., Walter, P.: Essential cell biology. Garland Science, New York, NY (2014).
9.
Barker, R.A., Cicchetti, F., Robinson, E.S.J.: Neuroanatomy and neuroscience at a glance. Wiley Blackwell, Hoboken, NJ (2018).
10.
Levitan, I.B., Kaczmarek, L.K.: The neuron: cell and molecular biology. Oxford University Press, [New York] (2015).
11.
Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S., Hudspeth, A.J. eds: Principles of neural science. McGraw Hill Medical, New York (2013).
12.
Diamond, M.C., Scheibel, A.B., Elson, L.M.: The human brain coloring book. Barnes & Noble Books, New York (1985).
13.
Clarke, C., Howard, R., Rossor, M., Shorvon, S.D. eds: Neurology: a Queen Square textbook. Wiley Blackwell, Chichester, West Sussex, UK (2016).
14.
Castiello, U.: The neuroscience of grasping. Nature Reviews Neuroscience. 6, 726–736 (2005). https://doi.org/10.1038/nrn1744.
15.
Davare, M., Kraskov, A., Rothwell, J.C., Lemon, R.N.: Interactions between areas of the cortical grasping network. Current Opinion in Neurobiology. 21, 565–570 (2011). https://doi.org/10.1016/j.conb.2011.05.021.
16.
Gerbella, M., Rozzi, S., Rizzolatti, G.: The extended object-grasping network. Experimental Brain Research. 235, 2903–2916 (2017). https://doi.org/10.1007/s00221-017-5007-3.
17.
Goodale, M.A., Meenan, J.P., Bülthoff, H.H., Nicolle, D.A., Murphy, K.J., Racicot, C.I.: Separate neural pathways for the visual analysis of object shape in perception and prehension. Current Biology. 4, 604–610 (1994). https://doi.org/10.1016/S0960-9822(00)00132-9.
18.
Grafton, S.T.: The cognitive neuroscience of prehension: recent developments. Experimental Brain Research. 204, 475–491 (2010). https://doi.org/10.1007/s00221-010-2315-2.
19.
Jeannerod, M., Arbib, M.A., Rizzolatti, G., Sakata, H.: Grasping objects: the cortical mechanisms of visuomotor transformation. Trends in Neurosciences. 18, 314–320 (1995). https://doi.org/10.1016/0166-2236(95)93921-J.
20.
Johansson, R.S., Flanagan, J.R.: Coding and use of tactile signals from the fingertips in object manipulation tasks. Nature Reviews Neuroscience. 10, 345–359 (2009). https://doi.org/10.1038/nrn2621.
21.
Lemon, R.N.: Descending Pathways in Motor Control. Annual Review of Neuroscience. 31, 195–218 (2008). https://doi.org/10.1146/annurev.neuro.31.060407.125547.
22.
Picard, N., Strick, P.L.: Imaging the premotor areas. Current Opinion in Neurobiology. 11, 663–672 (2001). https://doi.org/10.1016/S0959-4388(01)00266-5.
23.
Jellinger, K.A.: Neuropathology of sporadic Parkinson’s disease: Evaluation and changes of concepts. Movement Disorders. 27, 8–30 (2012). https://doi.org/10.1002/mds.23795.
24.
Kumaran, R., Cookson, M.R.: Pathways to Parkinsonism Redux: convergent pathobiological mechanisms in genetics of Parkinson’s disease. Human Molecular Genetics. 24, R32–R44 (2015). https://doi.org/10.1093/hmg/ddv236.
25.
Surmeier, D.J., Obeso, J.A., Halliday, G.M.: Selective neuronal vulnerability in Parkinson disease. Nature Reviews Neuroscience. 18, 101–113 (2017). https://doi.org/10.1038/nrn.2016.178.
26.
Walsh, D.M., Selkoe, D.J.: A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration. Nature Reviews Neuroscience. 17, 251–260 (2016). https://doi.org/10.1038/nrn.2016.13.
27.
Stefanis, L.:  -Synuclein in Parkinson’s Disease. Cold Spring Harbor Perspectives in Medicine. 2, a009399–a009399 (2012). https://doi.org/10.1101/cshperspect.a009399.
28.
Burré, J.: The Synaptic Function of α-Synuclein. Journal of Parkinson’s Disease. 5, 699–713 (2015). https://doi.org/10.3233/JPD-150642.
29.
Xilouri, M., Brekk, O.R., Stefanis, L.: Autophagy and Alpha-Synuclein: Relevance to Parkinson’s Disease and Related Synucleopathies. Movement Disorders. 31, 178–192 (2016). https://doi.org/10.1002/mds.26477.
30.
Dehay, B., Vila, M., Bezard, E., Brundin, P., Kordower, J.H.: Alpha-synuclein propagation: New insights from animal models. Movement Disorders. 31, 161–168 (2016). https://doi.org/10.1002/mds.26370.
31.
Roosen, D.A., Cookson, M.R.: LRRK2 at the interface of autophagosomes, endosomes and lysosomes. Molecular Neurodegeneration. 11, (2016). https://doi.org/10.1186/s13024-016-0140-1.
32.
Wolpert, D.M., Ghahramani, Z.: Computational principles of movement neuroscience. Nature Neuroscience. 3, 1212–1217 (2000). https://doi.org/10.1038/81497.
33.
Friston, K., Mattout, J., Kilner, J.: Action understanding and active inference. Biological Cybernetics. 104, 137–160 (2011). https://doi.org/10.1007/s00422-011-0424-z.
34.
Körding, K.P., Wolpert, D.M.: Bayesian decision theory in sensorimotor control. Trends in Cognitive Sciences. 10, 319–326 (2006). https://doi.org/10.1016/j.tics.2006.05.003.
35.
Johansson, R.S., Flanagan, J.R.: Sensory control of object manipulation. In: Nowak, D.A. and Hermsdorfer, J. (eds.) Sensorimotor Control of Grasping. pp. 141–160. Cambridge University Press, Cambridge (2009). https://doi.org/10.1017/CBO9780511581267.012.
36.
Sarlegna, F.R., Mutha, P.K.: The influence of visual target information on the online control of movements. Vision Research. 110, 144–154 (2015). https://doi.org/10.1016/j.visres.2014.07.001.
37.
Jakobson, L.S., Goodale, M.A.: Factors affecting higher-order movement planning: a kinematic analysis of human prehension. Experimental Brain Research. 86, (1991). https://doi.org/10.1007/BF00231054.
38.
Balendra, R., Patani, R.: Quo vadis motor neuron disease? World Journal of Methodology. 6, (2016). https://doi.org/10.5662/wjm.v6.i1.56.
39.
Bäumer, D., Talbot, K., Turner, M.R.: Advances in motor neurone disease. Journal of the Royal Society of Medicine. 107, 14–21 (2014). https://doi.org/10.1177/0141076813511451.
40.
Lemon, R.N.: Descending Pathways in Motor Control. Annual Review of Neuroscience. 31, 195–218 (2008). https://doi.org/10.1146/annurev.neuro.31.060407.125547.
41.
Dietz, V., Sinkjaer, T.: Spastic movement disorder: impaired reflex function and altered muscle mechanics. The Lancet Neurology. 6, 725–733 (2007). https://doi.org/10.1016/S1474-4422(07)70193-X.
42.
Blackstone, C.: Hereditary spastic paraplegia. In: Neurogenetics, Part II. pp. 633–652. Elsevier (2018). https://doi.org/10.1016/B978-0-444-64076-5.00041-7.
43.
Mathias, C.J., Bannister, S.R. eds: Autonomic Failure. Oxford University Press (2013). https://doi.org/10.1093/med/9780198566342.001.0001.
44.
Iodice, V., Low, D.A., Vichayanrat, E., Mathias, C.J.: Cardiovascular autonomic dysfunction in MSA and Parkinson’s disease: Similarities and differences. Journal of the Neurological Sciences. 310, 133–138 (2011). https://doi.org/10.1016/j.jns.2011.07.014.
45.
Iodice, V., Sandroni, P.: Autonomic Neuropathies. CONTINUUM: Lifelong Learning in Neurology. 20, 1373–1397 (2014). https://doi.org/10.1212/01.CON.0000455875.76179.b1.
46.
Institute of Neurology, Queen Square, National Hospital for Neurology and Neurosurgery (London, England): Neurology: a Queen Square textbook. John Wiley & Sons, Inc, Chichester, West Sussex, UK (2016).
47.
OMIM - Online Mendelian Inheritance in Man, https://www.omim.org/.
48.
Zrinzo, L.: The Role of Imaging in the Surgical Treatment of Movement Disorders. Neuroimaging Clinics of North America. 20, 125–140 (2010). https://doi.org/10.1016/j.nic.2009.08.002.
49.
Baev, K.V.: A New Conceptual Understanding of Brain Function: Basic Mechanisms of Brain-Initiated Normal and Pathological Behaviors. Critical ReviewsTM in Neurobiology. 19, 119–202 (2007). https://doi.org/10.1615/CritRevNeurobiol.v19.i2-3.30.
50.
Marsden, C.D., Obeso, J.A.: The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson’s disease. Brain. 117, 877–897 (1994). https://doi.org/10.1093/brain/117.4.877.
51.
Akram, H., Dayal, V., Mahlknecht, P., Georgiev, D., Hyam, J., Foltynie, T., Limousin, P., De Vita, E., Jahanshahi, M., Ashburner, J., Behrens, T., Hariz, M., Zrinzo, L.: Connectivity derived thalamic segmentation in deep brain stimulation for tremor. NeuroImage: Clinical. 18, 130–142 (2018). https://doi.org/10.1016/j.nicl.2018.01.008.